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An exploratory computational study of the reflection of an inward-facing conical
shock wave from its axis of symmetry is presented. This is related to more complex
practical situations in both steady and unsteady flows. The absence of a length scale
in the problem studied makes features grow linearly with time. The ensuing flow is
related to the Guderley singularity in a cylindrical imploding shock. The problem is
explored by making a large number of computations of the Euler equations. Distinct
reflection configurations are identified, and the regions of parameter space in which
they occur are delineated.

1. Introduction
This study started with a computational investigation of a process that occurs in

a shock tunnel. The idea of a shock tunnel is to produce a high-speed gas flow for
a short time. The high speed is achieved by expanding the gas from a high-enthalpy
reservoir state through a nozzle. To bring the gas to the required reservoir state, it is
heated and compressed by propagating a shock wave through it in a shock tube, and
reflecting the shock wave from the endwall of the shock tube, so that heating and
compression of the gas is performed by both the incident and the reflected shock.
The endwall has a hole in it that serves as the nozzle throat and is initially closed by
a thin diaphragm that bursts when the incident shock arrives. The problem is that
the shock reflection at the throat produces a convex shock that converges onto the
axis of symmetry of the throat.

Figure 1 illustrates the process with a computed time sequence. The incident shock
is reflected from the area reduction, forming the convex converging shock which is
reflected from the axis. As the angle at which the shock intersects the axis increases,
the reflection produces a strong jet to the left. This creates a vortex ring that is
strong enough to maintain a bulge in the reflected shock and a disk-shaped shock
within it. (It is this strong vortex ring that provides me with a tenuous connection to
Philip Saffman’s work, though I am not quite sure whether he believed its existence
when I presented it in a seminar at Caltech). Such a strong vortex ring is clearly
not desirable in a reservoir, where one wishes the flow to be as uniform as possible.
Changing the radius of curvature of the throat entrance makes no difference to this
phenomenon, which is plausible, since the convergence of the shock onto the axis is
virtually independent of the radius.

The observation of the strong vortex ring is not new. It has been discussed by
Zabusky et al. (1997), who called it the “vortex ring projectile”. They observed
it in a different situation that occurs when a shock wave passes over a heavy
spherical bubble surrounded by a lighter gas. The diffracted shock becomes convex
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Figure 1. Computed time sequence of the shock reflection process in the shock tunnel. The
greyshading in the images is a monotonic function of the magnitude of the density gradient scaled
by the local density. Ms = 9, γ = 1.2. The symmetry axis lies along the bottom edge of the pictures.
Note the strong vortex ring in the ninth frame, with a shock in its centre. The bottom row shows
enlarged views of the third row. The computation solves the Euler equations in a body-fitted grid
of 14 400 coarse cells with two tiers of adaptive mesh refinement by a factor of 3 each, so that the
effective number of cells is 1 166 400.

and converges onto the symmetry axis at the rear of the bubble, reflecting from the
axis and forming a vortex ring just as in the shock tunnel. This process is illustrated
in a computed time sequence in figure 2. Similar convex shock implosions were also
studied experimentally and theoretically by Barkhudarov et al. (1989). The waves
were relatively weak, however, which may be the reason why the vortex ring was not
observed.

In these flows, there exists a brief time interval just as the convex shock reaches the
axis, during which conditions are locally like those in the implosion of a cylindrical
shock onto its axis, which is a one-dimensional unsteady flow that has a self-similar
solution found by Guderley, see Whitham (1974), with a power-law singularity at the
axis. This singularity cannot be resolved by the computation, so that the possibility
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Figure 2. Time sequence of shock diffraction over a heavy spherical bubble. Shock Mach
number = 10, specific heat ratio = 1.4, density ratio = 100. Note the strong vortex ring at the
bottom right of the last frame. The symmetry axis lies along the bottom edge of the pictures.

exists that the strong vortex ring is an artifact of the computation method. On the
other hand, the cylindrical implosion is known to be unstable, see Whitham (1974).
Small perturbations of a circular shock grow as the shock converges onto the axis,
so that it becomes polygonal, with the result that the amplification due to focusing is
much more benign than the self-similar solution predicts. This has also been observed
experimentally, e.g. by Takayama, Kleine & Grönig (1987). In computations that
force the flow to be axisymmetric, such as those of figures 1 and 2, this instability,
which may conceivably prevent the formation of the vortex ring in physical reality,
is, of course, impossible.

In the shock tunnel the singularity can be avoided by placing a rod along the
axis, so that the shock is reflected off a body of finite diameter rather than from the
axis. Figure 3 shows a frame corresponding to the last frame of figure 1 when the
setup includes such a rod. It is clear that the rod prevents the vortex ring from being
formed. The question is whether this is because the singularity is avoided or because
the detail of the early reflection is now better resolved. In fact, in this example, the
vortex ring disappears completely only for rod diameters of 12 coarse grid cells or
more, which suggests that it is not caused by lack of resolution.

There exists a steady-flow analogue of the unsteady one-dimensional implosion
problem. This occurs, e.g. in an axisymmetric, overexpanded, supersonic jet, in which
an inward-facing conical shock is formed at the nozzle exit. In this case, the shock
usually reflects off the axis as a Mach reflection. A related problem was studied
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Figure 3. Shock reflection at the endwall of the shock tube in a shock tunnel with a rod along
the axis. The rod diameter in this flow is the smallest for which the vortex ring disappears. The
symmetry axis lies along the bottom edge of the picture. Conditions otherwise are as in figure 1.

in a hypersonic gun tunnel by Mölder et al. (1997), who observed that the shock
steepens with decreasing radius, until the shock angle reaches the von Neumann
angle (the smallest angle at which Mach reflection of strong shocks is possible).
At this point, transition to Mach reflection occurs. The shock was generated by a
ring that was shaped, according to an extension of the Taylor–Maccoll theory to
shock angles larger than 90◦, in order to produce an inward-facing conical shock.
When the shock was weak at the lip of the ring, the steepening could not be
detected in the experiment. However, in highly refined computations, a tiny Mach
reflection was found, preceded by steepening. For two stronger shocks, the size of the
Mach reflection was appropriately larger and was easily detected. The authors had
initially expected their special ring shapes to produce straight conical shocks. In fact,
the regular reflection implied by such a conical shock is not possible, as has been
shown theoretically by Rylov (1990). The steepening seems to be analogous to the
strengthening of the imploding shock, with a singular, power-law shock shape near
the axis, the singularity being prevented by the occurrence of a Mach reflection as
soon as the von Neumann angle is reached.

All of these interesting flows seem to be related to the Guderley singularity in
some way. Also, the singularity is prevented by the occurrence of Mach reflection
in the steady-flow problem, and may be prevented by axial unsymmetry (three-
dimensionality) or by Mach reflection in the convex shock implosion. Unfortunately
none of them is a particularly simple problem. A clean problem can, however, be
abstracted, that has a bearing on both the shock tunnel problem and the Mölder
flows. Imagine a diaphragm in the shape of a cone. Let the pressure on the outside
of the cone be high and the pressure inside the cone be low. Let the diaphragm burst
instantaneously, so that a shock wave propagates into the low-pressure gas inside the
cone, and an expansion propagates into the high-pressure gas on the outside. The
shock strength is initially uniform. As time proceeds and the shock is reflected from
the axis, the features of this flow grow linearly in time, since the problem does not
possess a length scale (inviscid perfect-gas flow). This pseudo-steady problem is the
subject of the remainder of this study. It has some similarities with the flow that
occurs in a shaped charge.
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2. Specification of the problem
The flow is assumed to be inviscid and axisymmetric, and the medium is taken to

be a perfect gas. We therefore compute the flow using the unsteady Euler equations.
Actually, since the flow is expected to be self-similar, the Euler equations could be
transformed from physical space, (x, t), to pseudo-steady space, (x/t, t), with the result
that the explicit time dependence cancels out. The solution could then be obtained
by solving the transformed equations, see e.g. Samtaney & Pullin (1996). This is
more computationally intensive, however, and we choose to solve the unsteady Euler
equations.

2.1. Initial conditions

Imagine a three-dimensional physical space to be divided into two regions by a conical
surface. The apex of the cone is at x = 0, and the positive x-direction is the symmetry
axis of the cone and forms an acute angle α with the cone’s generators. Let the space
on the positive x-axis side of the surface be called the inside of the cone. All of the
space is filled with the same perfect gas. At times t < 0, constrain the pressure and
temperature on the outside to p4, T4, and on the inside to p1, T1. At t = 0 , remove
the constraint instantaneously and let the flow evolve.

If we do the computation in a Cartesian grid, the conical interface cuts the cells at
an angle, so that the boundary between the two gas states is represented by a staircase
shape instead of the sharp straight line we want. The computation can handle this at
relatively low pressure ratios, but breaks down in the more interesting high pressure
ratio cases. To avoid this problem, we start the flow off with an interface of finite
thickness, across which the temperature and pressure have hyperbolic tangent profiles.
The steepest-slope thickness of the interface is approximately 2 coarse-grid cells.

2.2. The computational setup

For the computations, the software system Amrita, constructed by James Quirk, see
Quirk (1998), was used. Amrita is a system that automates and packages computa-
tional tasks in such a way that the packages can be combined (dynamically linked)
according to instructions written in a high-level scripting language. The present
application uses features of Amrita that include the automatic construction of differ-
ent Euler solvers, automatic documentation of the codes, automatic adaptive mesh
refinement according to simply chosen criteria, and scripting-language-driven compu-
tation, archiving and post-processing of the results. The automation of the assembly
and sequencing of the tasks dramatically reduces the possibility of hidden errors.
More importantly, it makes computational investigations transparent and testable by
others. The ability to change one package at a time, without changing the rest of the
scheme, permits easy detection of sources of error. The scope of the software system
far exceeds its use here. The Euler solver generated for the present computations was
an operator-split scheme with HLLE flux and kappa-MUSCL reconstruction.

3. Results
3.1. Choice of parameter space

In a perfect gas, the pseudo-steady behaviour of the shock wave is determined by
the initial shock Mach number, Ms, the angle α and the ratio of specific heats, γ.
The flow is also affected, however, by the ratio of sound speeds across the interface,
since the shock that is reflected from the axis impinges onto the interface, and the
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Figure 4. To illustrate the features of the process, we show an early phase of the oblique shock
implosion shortly after the conical diaphragm has burst. The dispersed expansion wave that
propagates to the upper left is visible as a broad grey band. The shock wave that propagates to
the bottom right, toward the axis of symmetry is seen as a sharp black line followed by the black
contact surface just above it. The faint white line marks the original location of the diaphragm.

p4/p1 2 5 10 20 50 100
γ

1.2 1.20 1.67 2.23 3.05 4.73 6.65
1.4 1.19 1.62 2.15 2.93 4.52 6.34

Table 1. Values of Ms at computed conditions with T4/T1 = p4/p1.

details of this interaction are sensitive to this ratio. In order to cover the parameter
space with a reasonable density we choose conditions according to table 1 with
T4/T1 = p4/p1, for the shock angles α = 20◦, 30◦ and 40◦. Additional computations
were done with different temperature ratios, but the range of table 1 suffices for the
present discussion.

3.2. The reflection configurations

The main features of the early evolution of the flow may be seen in the pseudo-
schlieren image of figure 4. Six later stage images are shown in figure 5 of the results
of computations with α = 20◦ for shock strengths ranging from Ms = 1.19 to 6.34. In
the case of the weakest shock, the incident shock may be seen to steepen as expected;
however, the reflection configuration seems to be regular. At Ms = 1.62 (top right),
the characteristic wake after a Mach reflection can be distinguished. As the shock
strength is increased, the shock steepening becomes more pronounced, the Mach
reflection becomes more easily recognizable, and the interface follows the shock more
closely and becomes sharper. The interaction between the reflected shock and the
interface is determined by the speed-of-sound ratio across it, i.e. by the temperature
ratio. This is why the character of the transmitted wave changes in these examples,
for which the temperature ratio has been coupled with the pressure ratio. In all of
these frames, the expansion wave that propagates into the driver gas to the top left
has already left the field of view.

In order to examine the reflection configurations in these cases more closely, figure
6 shows enlarged views of the same cases. Now, the Mach stem in all but the
weakest-shock case can be distinguished clearly. The resolution of the computation
in that case is not good enough to detect it. The character of the reflection seems to
change at the higher Mach numbers. We will return to this after discussing the larger
angles.

Figure 7 shows similar views of the case α = 30◦. In all of these, the steepening
of the incident shock is evident. Also, the first three clearly exhibit simple Mach
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p4/p1= 2,  t = 20.22,  Ms =1.19 p4/p1= 5,  t =10.97,  Ms =1.62

p4/p1= 10,  t = 10.35,  Ms = 2.15 p4/p1= 20,  t = 7.23,  Ms = 2.93

p4/p1= 50,  t = 4.53,  Ms = 4.52 p4/p1=100,  t = 3.19,  Ms = 6.34

Figure 5. Dependence of the reflection configuration on shock strength for the case of α = 20◦,
T4/T1 = p4/p1, γ = 1.4. The thin white line marks the original location of the diaphragm. The
waviness of the interface in the stronger-shock cases is a memory of the initial representation of
the interface in the coarsest grid.

reflection with a straight Mach stem. However, in the case Ms = 2.93, as in the
stronger ones, the Mach stem shows a strong forward bulge, and a reflected shock
that is almost parallel to the axis. In addition, another shock follows the reflected
shock and is almost parallel to it.

In figure 8, α = 40◦, the Mach stems are larger, so that the structure of the reflection
configuration can be more easily resolved. It now becomes clear that the bulge of the
Mach stem appearing for the higher shock strengths is associated with a vortex ring
that seems to be the same phenomenon as observed in the shock tunnel problem and
in the diffraction of a shock over a heavy bubble. At Ms = 2.93 the vortex ring causes
a second triple point to appear on the Mach stem. With increasing shock (and vortex
ring) strength, the second triple point moves up along the Mach stem. In calculations
for even higher shock strengths, the second triple point eventually merges with the
main triple point, producing the configuration seen in the case of the strong shocks
with α = 30◦. Returning to figure 5, the barely resolved strong-shock reflections may
now be recognized as this same configuration. Again, the strongest shocks produce
reflected shocks that are nearly parallel to the symmetry axis, which are followed by
another shock.

The interaction of the reflected shock with the interface now produces a transmitted
wave with a propagation velocity component parallel to the interface that is faster
than the intersection of the reflected wave and the interface. This causes a signal to
be retransmitted across the interface into the test gas, where this precursor wave is
supersonic.
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p4/p1= 2,  t = 20.22,  Ms =1.19 p4/p1= 5,  t =10.97,  Ms =1.62

p4/p1= 10,  t = 10.35,  Ms = 2.15 p4/p1= 20,  t = 7.23,  Ms = 2.93

p4/p1= 50,  t = 4.53,  Ms = 4.52 p4/p1=100,  t = 3.19,  Ms = 6.34

Figure 6. Dependence of the reflection configuration on shock strength for the case of α = 20◦,
T4/T1 = p4/p1, γ = 1.4. Enlarged views of the shock reflection structure.

p4/p1= 2,  t = 29.99,  Ms =1.19 p4/p1= 5,  t =18.92,  Ms =1.62

p4/p1= 10,  t = 16.24,  Ms = 2.15 p4/p1= 20,  t = 10.28,  Ms = 2.93

p4/p1= 50,  t = 6.54,  Ms = 4.52 p4/p1=100,  t = 4.65,  Ms = 6.34

Figure 7. Dependence of the reflection configuration on shock strength for the case of α = 30◦,
T4/T1 = p4/p1, γ = 1.4.
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p4/p1= 2,  t = 35.54,  Ms =1.19 p4/p1= 5,  t = 23.21,  Ms =1.62

p4/p1= 10,  t = 19.46,  Ms = 2.15 p4/p1= 20,  t = 12.36,  Ms = 2.93

p4/p1= 50,  t = 7.86,  Ms = 4.52 p4/p1=100,  t = 5.60,  Ms = 6.34

Figure 8. Dependence of the reflection configuration on shock strength for the case of α = 40◦,
T4/T1 = p4/p1, γ = 1.4.

3.3. Test of self-similarity

The absence of a characteristic length in this problem should manifest itself in
configurations that grow linearly with time. In the computation, we are, of course
never free of a length scale. In the present case, in addition to the grid scale, we
have introduced a finite initial interface thickness. In order to test the quality of the
self-similarity of the solutions obtained here, figure 9 shows three enlarged views of
the reflection configuration at Ms = 2.93 for the three angles. In these, an early phase
of the flow is shown as a pseudo-schlieren image. Then a later phase is superimposed
onto this picture in the form of contours of density gradient at a scale corresponding
to that appropriate for linear growth, using white lines. It appears that the detailed
features of the configurations are just about congruent, though the thickness of the
interface clearly becomes relatively smaller at the later times. This is a scale effect
related to the initial interface thickness.

However, on close inspection of the 20◦ case, the Mach stem in the late phase is seen
to be ahead of that of the early phase by about two shock thicknesses. Inadequate
resolution of the features in the early phase is clearly responsible for this difference,
which is thus a scale effect related to the grid scale.

3.4. Approximate boundaries of the reflection configurations

Enough of the parameter space has been covered by the computations shown here
and additional ones not shown to draw approximate boundaries between the three
main reflection configurations observed: the simple Mach reflection (S), the bulging
Mach stem with two triple points (DV), and the vortical Mach reflection (V) in which
the vortex ring dominates the Mach stem. This has been done in figure 10 in a plot



10 H. G. Hornung

t = 5.35 and 10.84,   α = 20°

t = 5.69 and 12.54,   α = 30°

t = 6.63 and 15.21,   α = 40°

Figure 9. Test of self-similarity, Ms = 2.93, γ = 1.4. The white lines are contours of density
gradient for a later time, scaled according to the time.

of α against M∞ = Ms/ sin α for γ = 1.2 and 1.4. The wide region of the occurrence
of DV in the case of larger angle when γ = 1.4 all but disappears when γ = 1.2. The
sensitivity of reflection configurations to γ is a phenomenon that occurs also in plane
shock reflection.

3.5. Comparison with shock-tunnel and bubble flows

Returning to the sequence shown in figure 1, we can now recognize the reflection
configurations that occur there as fitting in with the behaviour of the abstracted
problem, in as much as the V configuration is observed immediately after the convex
shock hits the axis until the intersection of the shock with the axis increases, so that,
between frames 7 and 8, the transition to DV occurs. The same transition is observed
in figure 2, between frames 4 and 5.



Oblique shock reflection from an axis of symmetry 11

50

40

30

20

10
0 2 4 6 8 10

V
S

DV

c =1.2

α
(d

eg
.)

50

40

30

20

10
2 4 6 8 10

VS

DV

c =1.4

α
(d

eg
.)

12
M∞ = Ms/sin α

Figure 10. Approximate boundaries between the three reflection configurations for γ = 1.2 and 1.4.

4. A possible physical realization
A conical diaphragm separating gases at different pressure is not a very easy thing

to realize experimentally. Instead, one could generate the self-similar flow by shaping
a solid explosive in the form of a hollow cone and detonating it from the cone surface.

In a limited parameter range, an easier method would be to shape the endwall of a
shock tube like a hollow cone, at an angle such that the shock is reflected in a regular
reflection from the cone surface. This reflected shock is then initially conical and has
uniform strength between the cone apex and the point reached by the corner signal.
This converging conical shock will then reflect off the axis just as in the case studied
here. Unfortunately, the parameter range that can be covered in this way is restricted
to large values of α.

5. Conclusions
An exploratory computational study has been made of the Mach reflection config-

urations that occur when a conical shock reflects from its axis of symmetry. Distinct
reflection configurations are identified and the regions of parameter space in which
they occur are delineated. The inviscid problem has no characteristic length so that
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features grow linearly with time. The manner in which a practical problem led to
the abstraction of the self-similar one is explained, and its features are related to
those of the Guderley singularity and to a steady-flow analogue. In a sequel to this
exploratory work shock steepening and the genesis of the reflection configurations
will be discussed.

I wish to thank Dale Pullin and Gerry Whitham for valuable discussions and James
Quirk for very important help with the computations.
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